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Abstract

In this paper, we present a theoretical analysis of magnetoelasticity for a set of superconducting partial torus

with D-typed non-circular coils. This kind of coil is an essential model adopted in the new conception design
of Tokamak fusion reactors. Its magneto±mechanical behavior, including bending and snapping, is simulated
with the aid of the curved beam theory and the Biot±Savart law. A semi-analytical method is employed

to quantitatively solve the boundary-value equations of the coil. The e�ects of the radius ratio l=R1/R2 of the
coil on the critical snapping current, the deformation and the internal force components of the coil are
discussed. It is found that the critical current increases and the deformation decreases with the increase of the
ratio l=R1/R2, and small misalignments of the coils make the critical current lower. # 1999 Elsevier Science Ltd.

All rights reserved.
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1. Introduction

With the rapid increase in the consumption of energy, it is important to ®nd new energy
resources. Development of nuclear fusion as a practical energy source would provide great bene®ts.
In the conception, design and construction of an experimental fusion reactor, high magnetic ®elds
are created by superconducting coils to keep the plasma from cooling o� on the reactor vessel
walls. The coil is subjected to magnetic forces produced by the interaction of the coil with
magnetic ®elds from nearby coils. Magnetoelastic bending and snapping of the coil have been

International Journal of Solids and Structures 37 (2000) 563±576

0020-7683/00/$ - see front matter # 1999 Elsevier Science Ltd. All rights reserved.

PII: S0020-7683(99 )00018-9

www.elsevier.com/locate/ijsolstr

* Corresponding author. Tel.: +0086-931-8911727; Fax: +0086-931-8625576.

E-mail address: zhouyh@lzu.edu.cn (X.J. Zheng)



observed experimentally. Since structural devices are often load limited by the bending and
snapping of the structural elements, it is necessary to quantitatively analyze the mechanical
behavior of the coil for the safety of the reactor.

Moon (1976) and Moon and Swanson (1977) were the ®rst to conduct an experiment and gave an
analytical model for magnetoelastic snapping of superconducting coils. In his theoretical prediction, the
critical current was obtained when the frequency of the out-of-plane vibration of a current-carrying coil
becomes zero. Geiger and Jungst (1991) used this method to investigate the TESPE toroidal magnet
system. Miya et al. (1980) and Miya and Uesaka (1982) adopted the ®nite element method to obtain the
theoretical prediction for the critical current; they also performed an experiment of a three-coil
superconducting partial torus. Aside from the investigation on the snapping of the coil, Motojima (1993)
simulated the magnetoelastic bending of the coil by an uncoupled theoretical model. It should be noted
that only one kind of mechanical behavior, either bending or snapping, can be simulated by the above
methods. A nonlinear mathematical model (Zhou et al., 1995) was recently presented for describing the
magnetoelastic behavior, both bending and snapping, of D-typed circular coils in a partial torus. Their
theoretical prediction for the critical current is in a good agreement with Miya's experimental data
(Miya and Uesaka, 1982). However, all these researches only focus on the circular coil. Since more and
more coils installed in a superconducting Tokamak are non-circular ones which have not been
investigated in the literature, we should pay more attention to the non-circular coils.

Fig. 1. Non-circular three-coil partial torus: (a) top view, (b) side view and coordinate systems.
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In this paper, we will analyze the magnetoelastic bending and snapping of a superconducting non-
circular coil composed of several circular arcs with di�erent radii. A theoretical model is suggested for
the non-circular coil based on the curved beam theory and the Biot±Savart law. The e�ect of the elastic
deformation, including in-plane and out-of-plane bending, axial extension and torsion, of the coil on the
critical current is considered. A semi-analytical and semi-numerical solution combined by an exact
fundamental solution to the homogeneous di�erential equations and a numerical particular solution to
the inhomogeneous di�erential equations is obtained for the nonlinear boundary-value equations of the
problem. For the non-circular coil composed of three circular arcs with di�erent radii, the e�ect of the
radius ratio, l=R1/R2, on the magneto±mechanical behavior is discussed in detail. The numerical results
show that there may exist an optimum value for the ratio l=R1/R2, e.g., 1.382, for which the critical
current is higher and the internal forces are lower than those for the other values. Moreover, the
numerical results con®rm that small misalignments of coils will in¯uence the critical snapping current.
These results are useful to the study and design of a fusion reactor with non-circular D-typed
superconducting coils.

2. Basic equations

In a three-coil superconducting partial tours, the current-carrying coils are non-circular and D-typed.
A deformable coil, called coil c, is symmetrically placed between two ®xed side coils, respectively called
coil l and coil r, see Fig. 1. To examine the bending and the snapping of coil c, we ®rst establish a ®xed
global coordinate system Oxyz and a local coordinate system oxZz whose unit vectors are e1 (along the
tangent direction of the axis of the coil c ), e3 (along the normal to the axis of the coil c and lies in the
plane of the coil c ) and e2 (=e3 � e1) (normal to the plane of the coil c ), respectively. Then the e�ect of
the deformation of the coil c on its equlibrium con®guration is neglected since only the small elastic
deformation is considered here. Finally, the basic equation combines equilibrium equations with elastic
equations for the deformed coil c in the local coordinate system oxZz can be written as follows (Love,
1944):�

dN1

dx
� w13Q3 � q1

�
e1 �

�
dQ2

dx
ÿ w23Q3 � q2

�
e2 �

�
dQ3

dx
ÿ w13N1 � w23Q2 � q3

�
e3 � 0, �1�

�
dM1

dx
� w13M3 �m1

�
e1 �

�
dM2

dx
ÿ w23M3 ÿQ3 �m2

�
e2

�
�

dM3

dx
ÿ w13M1 � w23M2 �Q2 �m3

�
e3 � 0,

�2�

N1

EF
� du

dx
� w13w, �3�

M3

EJ3
� d 2v

dx2
ÿ d

dx
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�
dw

dx
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�
ÿ fw13, �4�
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�
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dx
ÿ w23w

�
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�
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� df
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� w13

�
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dx
ÿ w23w

�
, �6�

in which w13�ÿe3 � de1
dx and w23�e3 � de2

dx are curvatures of the coil c before it deformed; P�x� � N1�x�e1�
Q2�x�e2�Q3�x�e3 and M�x� �M1�x�e1�M2�x�e2�M3�x�e3 are the internal force vector and the internal
moment vector of the coil c, respectively; F is the cross section of the coil; J2 and J3 are the inertial
moments of the section about the Z- and z-axes, respectively; U�x� � ue1 � ve2 � we3 is the displacement
vector of the coil c; f is the torsional angle; q � q1e1 � q2e2 � q3e3 and m � m1e1 �m2e2 �m3e3 are a
magnetic force vector and a moment vector exerted on the centerline of the coil c, respectively.
According to the Biot±Savart law and the Lorentz law, and neglecting the e�ect of the self-®eld on both
the magnetic force and on the magnetic moment (Moon, 1984), we have (see Zhou et al., 1995) m(rc)=0
and

q�rc� � q1e1 � q2e2 � q3e3 � mIlIc
4p

�
Sl

e1 �
"
drl � rclÿ

rcl
�3

#
� mIrIc

4p

�
Sr

e1 �
�

drr � rcr

�rcr �3
�
, �7�

where m is the permeability in a vacuum; rl, rr and rc are the position vectors of the coil l, the coil r and
the coil c, respectively, which are usually expressed as a function on the variable x; rcl or rcr are the
relative position vector between the centerline of the coil l or the coil r and the centerline of the
deformed coil c, that is

rcl � rc � U�x� ÿ rl

rcr � rc � U�x� ÿ rr: �8�
It should be noted that Eq. (7) is obtained based on some assumptions:

1. the coil is isotropic and homogeneous with equivalent elastic modulus,
2. the distribution of the current is uniform across the cross-section of the coil,
3. the distribution of magnetic ®eld in the coil can be treated as that of a normal conductor, and
4. the cross sectional dimension of the coil is much smaller than the distance between two adjacent

coils.

Although superconducting currents ¯ow only on or near the surface of superconducting ®laments,
assumptions (2) and (3) may be reasonable since the coil is made of multi-®laments which are more or
less evenly distributed.

From Eq. (8), one can ®nd that the magnetic force q(rc) and the displacement U(x ) of the coil c are
mutually coupled. In other words, the magnetic force can a�ect the deformation of the coil c and,
conversely, the deformation of the coil c causes a change in the magnetic force. This kind of interaction
makes the basic equations (Eqs. (1)±(6)) nonlinear.

Usually, the carrying current coils in a superconducting torus have the same geometrical sizes and are
symmetrically placed in the toroidal direction. For this case, we have Il � Ic � Ir � I, yl � yr. For an
arbitrary pair of symmetry points on coil l and coil r, respectively, when v(x )00, we haveÿ

rcl
�
1
� ÿrcr �1, ÿ

rcl
�
2
� ÿÿrcr �2, ÿ

rcl
�
3
� ÿrcr �3 �9�
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d�rl�1 � d�rr�1, d�rl�2 � ÿd�rr�2, d�rl�3 � d�rr�3 �10�

and rcl � rcr . Therefore, Eq. (7) is then

q�rc� � mI 2

4p

�
Sl

e1 �
"

drl � rclÿ
rcl
�3 � drr � rcr

�rcr �3
#
� mI 2

4p

�
sl

2ÿ
rcl
�3 hÿrcl �3 d�rl�1 ÿ

ÿ
rcl
�
1

d�rl�3
i
e3, �11�

which shows that q(rc)�e2=0. That is, there is no transverse magnetic force component on the coil c
when the side coils are symmetrically placed and v(x )00. This means that a trivial solution of the out-
of-plane de¯ection is always the solution to the problem. Since the governing equations are nonlinear, it
is possible that there exists a nontrivial solution of the out-of-plane transverse bending deformation
when the applied current approaches a critical value. This phenomenon is referred to as magnetoelastic
snapping (buckling). However, in practice, it is unavoidable that there exist some misalignments
described by an initial small angle a0 (see Fig. 1) to the symmetry of the coils, which usually leads to
q(rc)�e2$0. For this case, there exists the out-of-plane deformation of the coil c, referred to as
magnetoelastic bending. As the applied current increases, the deformation increases nonlinearly until the
coil loses stability. Here, we shall pay more attention to searching the critical snapping current and
discussing the e�ect of misalignments on the critical snapping current.

3. Solving programe

In general, it is not easy to get a set of analytical solutions to Eqs. (1)±(6) since these di�erential
equations are nonlinear ones with variable coe�cients. Here, we will use a semi-analytical and semi-
numerical method to obtain the solution to Eqs. (1)±(6). Dividing the region of the non-circular coil c
into N circular arcs with di�erent radii Ri (i = 1,2,..., N ), for each circular arc, we can simplify Eqs.
(1)±(6) as follows:

dYi�x�
dx

� AiYi�x� � Fi�x�, �12�

in which Fi�x� � �ÿq1,ÿ q2,ÿ q3,0,0,0,0,0,0,0,0,0�T and Yi�x� � �Ni�x�, Q2i�x�, Q3i�x�,M1i�x�, M2i�x�,
M3i�x�, ui�x�, fi�x�, vi�x�, dvi�x�

dx , wi�x�, dwi�x�
dx �T.

A11
i �

2666666666666666664

0 0
ÿ1
Ri

0 0 0

0 0 0 0 0 0

1

Ri
0 0 0 0 0

0 0 0 0 0
ÿ1
Ri

0 0 1 0 0 0

0 ÿ1 0
1

Ri
0 0

3777777777777777775

, �13�
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A21
i �

266666666666666664

1

EF
0 0 0 0 0

0 0 0
1

K
0 0

0 0 0 0 0 0

0 0 0 0 0
1

EJ3

0 0 0 0 0 0

2

EFRi
0 0 0

ÿ1
EJ2

0

377777777777777775
, �14�

A22
i �

2666666666666666664

0 0 0 0
ÿ1
Ri

0

0 0 0
ÿ1
Ri

0 0

0 0 0 1 0 0

0
1

Ri
0 0 0 0

0 0 0 0 0 1

0 0 0 0
ÿ1
R2

i

0

3777777777777777775

�15�

and A12
i � 06�6, E is the equivalent Young's modulus of the superconducting coil, K=Gk is the

torsional rigidity of the section about the x-axis, G is the equivalent shear elastic constant. The
equivalent elastic constants, E and G, can be determined by the theory of composite materials (Miya et
al., 1980; Miya and Uesaka, 1982); k is given by (Timoshenko and Goodier, 1970):

k � b3h

3
ÿ 64b4

p5
X1

m�1,3,5,...

1

m5
tanh

mph
2b

�16�

where b and h are the width and height of the rectangular cross-section of the coil, respectively.
Moreover, the continuity conditions Y(xie )=Y(x(i + 1)b) should be also satis®ed. Here, `ie' means the end
of i-th arc, and `(i + 1)b' means the beginning of (i+ 1)-th arc. When the coil is clamped, we have the
boundary conditions as follows:

x � x1b, and x � xNe: U � 0, f � 0,
dv

dx
� 0,

dw

dx
� 0: �17�

Thus, the solution to Eqs. (1)±(6) can be obtained by solving N sets of Eq. (12) with one set of
boundary conditions, that is, Eq. (17) and N ÿ 1 sets of continuity conditions.

Here, we ®rst solve the homogeneous equation of Eq. (12) for the i-th arc. The general solution,
Ygi (x ), of Eq. (12) for Fi (x )00 can be expressed as:

Ygi�x� � Gi�x�Ci, �18�
where Ci=[Ci1,Ci2,..., Ci12]

T is an unknown constant matrix; Gi (x ) is a closed fundamental solution
matrix composed of four submatrixes Gkl

i �x� (k,l = 1,2), that is, G12
i �x� � 06�6,
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G11
i �x� �
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in which

D1 � 2

EFRi
� Ri

EJ2
, D2 � 1

ERiJ3
� 1

KRi
, �22�

X. Jing Zheng et al. / International Journal of Solids and Structures 37 (2000) 563±576 569



t1 � D1R
2
i

2
ÿ Ri

EF
, t2 � D2R

2
i

2
ÿ Ri

EJ3
, �23�

t1d � D1Rix
2

sin
x
Ri

, t1c � D1Rix
2
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x
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, �24�

t2d � D2Rix
2

sin
x
Ri

, t2c � D2Rix
2

cos
x
Ri
: �25�

Secondly, we will obtain the particular solution Ypi (x ) to Eq. (12) for the applied load Fi(x ) by using
the ®nite di�erence method. Let us divide the i-th arc [xib,xie ] into M elements, such that

xib � xi0 < xi1 < xi2 < . . . < xi�Mÿ1� < xiM � xie: �26�

Denoting Y
j
pi � Ypi�x�jx�xj ( j = 0,1,2,..., M ), we have

Y j�1
pi � Y

j
pi �

h
AiY

j
pi � Fi�xj �

i
Dxj, �27�

in which dxj=xj + 1ÿxj. Since a particular solution is independent of the boundary conditions, it is
obvious that the particular solution Ypi (x ) can be iteratively obtained once the initial value of the
iteration Ypi (xib ) is given arbitrarily.

After the general solution given by Eq. (18) and the particular solution given by Eq. (27) are
obtained, we can write the solution to Eq. (12) for a pre-given magnetic force as follows:

Yi�x� � Ygi�x� � Ypi�x� � Gi�x�Ci � Ypi�x�: �28�

Denoting Ygi�xib� � Ygi�x�jx�xib and Ypi�xib� � Ypi�x�jx�xib , respectively, we can ®nally express the
unknown constant matrix Ci in the form

Ci � �Gi�xib��ÿ1�Yi�xib� ÿ Ypi�xib��: �29�

Further,

Yi�x� � Gi�x��Gi�xib��ÿ1�Yi�xib� ÿ Ypi�xib�� � Ypi�x�: �30�

The above expression can also be written as follows:

Yi�x� � Gi�x��Gi�xib��ÿ1 � Tiÿ1 � Tiÿ2 . . . T1 � �Y1�x1b� ÿ Yp1�x1b�� � Ypi�x� �Gi�x��Gi�xib��ÿ1

�
n
�Yp�iÿ1��x�iÿ1�e� ÿ Ypi�xib�� � Tiÿ1 � �Yp�iÿ2��x�iÿ2�e� ÿ Yp�iÿ1��x�iÿ1�b�� � Tiÿ1 � Tiÿ2

� �Yp�iÿ3��x�iÿ3�e� ÿ Yp�iÿ2��x�iÿ2�b�� � . . .� Tiÿ1 � Tiÿ2 . . . T2 � �Yp1�x1e� ÿ Yp2�x2b��
o
: �31�

In order to simplify the solving programe, we choose the particular solution which satis®es the
continuity condition Ypi (xib )=Yp(i ÿ 1)(x(i ÿ 1)e), Eq. (31) is then

Yi�x� � Gi�x��Gi�xib��ÿ1 � Tiÿ1 � Tiÿ2 . . . T1 � �Y1�x1b� ÿ Yp1�x1b�� � Ypi�x�, �32�

X. Jing Zheng et al. / International Journal of Solids and Structures 37 (2000) 563±576570



in which Ti=Gi(xie )[Gi(xib )]
ÿ1, and the unknown, Y1(x1b), can be determined by the boundary

conditions at x=x1b and x=xNe, i.e., Eq. (17).

It should be noted here that Eq. (32) is obtained for the case when the applied magnetic force is
known a priori. However, since the magnetic force acting on the coil c depends on its deformation, the
force is not known until the deformation is determined. In order to solve this kind of nonlinear coupling
problem between the magnetic force and the deformation of the coil c, we need to calculate the
magnetic force q=qn by Eq. (7) for a pre-given displacement U=Un. Then, we get a new displacement
U=Un + 1 of the coil c under the magnetic force qn from Eq. (32). This iteration procedure will be
repeated until the condition

kUn�1 ÿ Unk < d �33�
is satis®ed. Here, 0 < d<<1 is a prescribed tolerance, and n denotes the number of iteration.

4. Numerical results

Here, we focus our attention on the magnetoelastic bending and snapping of the non-circular coil c in
a three-coil superconducting partial torus. The material and geometrical parameters of the coil c
adopted by the numerical examples are as follows: E= 2.7 � 1010 pa, G= 3.4 � 109 pa, yr=yl=22.58,
h = 0.6 mm, a = 50 mm, b = 9 mm and c = 40 mm, which are the same ones as Miya and Uesaka
(1982) used in their experiments. In order to con®rm the validity of our theoretical analysis and
calculation code, we compare the theoretical prediction of critical snapping current with the
experimental data for a circular coil. Our numerical result is 48.09 A/turn, which is much closer to Miya

Fig. 2. Out-of-plane transverse de¯ection distribution for non-circular coil (I= 74.5 A/turn).
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et al.'s experimental data, 47.8 A/turn. So, we can conclude that our theoretical model and numerical
program are reliable and reasonable.

For a non-circular coil composed of three circular arcs as shown in Fig. 1, the distributions of the
displacement and the internal force components are obtained by the theoretical model and the semi-
analytical method presented in this paper and shown in Figs. 2, 4 and 5. Due to the symmetry in both
the geometry and the magnetic ®eld of the coil c about the horizontal axis (i.e. the y±O±z plane), the
distributions of the displacement and the internal force exhibit the symmetry property as expected. It is
found in Fig. 2 that the transverse displacement of the coil is much larger than the in-plane one.

The e�ects of radius ratio l=R1/R2 on the distributions of the displacement, the internal force and
the the critical snapping current are quantitatively discussed. Fig. 2 shows that the transverse
displacement v decreases with the increase of the radius ratio l=R1/R2. The critical snapping current vs.
radius ratio l=R1/R2 is plotted in Fig. 3. It is obvious that the critical snapping current increases with
l=R1/R2, and the increment of the critical snapping current for l=R1/R2 < 1.382 is faster than that for
l=R1/R2 > 1.382. From Fig. 4, we ®nd that the in-plane displacement components u and w decrease
with the increase of radius ratio l=R1/R2 when 1 < l < 1.382, and increase when l> 1.382. When l is
near about 1.382, the displacements, u and w, are almost the minimum ones. The distributions of the
internal force components N and M2 are shown in Fig. 5. Aside from their maximum values, taken
place at the two ends of the coil, decrease with the increase of l=R1/R2, the ¯uctuation of the internal
force near the middle region of the coil is within a narrow range when l=R1/R2 is near 1.382.

The e�ect of a unsymmetrical alignment on the critical snapping current for a circular coil is also
discussed. The assymmetry is described by a small inclination angle, a0 (see Fig. 1). The maximum
transverse de¯ection of the circular coil versus the carrying current for a given angle a0 is shown in Fig.
6. From Fig. 6, one can ®nd that there exists a bending deformation for the coil before the snapping
happens. The larger the angle, the more obviously the bending deformation. The critical snapping
current versus the inclination angle a0 are shown in Fig. 7. The inclination angle, a0, lowers the critical
snapping current. Therefore, the theoretical values of the critical snapping current for the coils placed
symmetrically should be higher than the experimental ones, since some small misalignments are
unavoidable in practice.

Fig. 3. Critical current value vs. radius ratio l=R1/R2.
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Fig. 4. In-plane displacement distribution for non-circular coil (I= 74.5 A/turn): (a) displacement u, (b) displacement w.
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Fig. 5. Internal force distribution for non-circular coil (I= 74.5 A/turn): (a) extension force N, (b) bending moment M2.
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Fig. 6. Maximum transverse de¯ection vs. carrying current (R1=R2=64.5 mm).

Fig. 7. Critical current vs. disturbance angle a0 (R1=R2=64.5 mm).
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5. Conclusions

With the aid of the Biot±Savart law and the curved beam theory, a theoretical analysis for
magnetoelastic bending and snapping of the current-carrying non-circular coil is presented in this paper.
The mechanical behavior of the coil in the partial torus is simulated by a semi-analytical solving
method. The numerical results show that the non-circular coil has a much better stability than the
circular one since the values of the critical snapping current are distinctly heightened with the increase of
ratio l=R1/R2. The distributions of the displacement and the internal force ¯uctuate in a narrow range
when l=R1/R2 is near about 1.382, which means that there possibly exists an optimum mechanical state
for a non-circular coil when the radius ratio l=R1/R2 is near 1.382. The numerical results also con®rm
that the initial inclination angle arising from the misalignments of the coils makes the critical snapping
current lower. These results are useful in the design of a fusion reactor.
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